An RIP-based approach to $\Sigma\Delta$ quantization for compressed sensing
نویسندگان
چکیده
In this paper, we provide a new approach to estimating the error of reconstruction from Σ∆ quantized compressed sensing measurements. Our method is based on the restricted isometry property (RIP) of a certain projection of the measurement matrix. Our result yields simple proofs and a slight generalization of the best-known reconstruction error bounds for Gaussian and subgaussian measurement matrices.
منابع مشابه
Sobolev Duals for Random Frames and ΣΔ Quantization of Compressed Sensing Measurements
Quantization of compressed sensing measurements is typically justified by the robust recovery results of Candès, Romberg and Tao, and of Donoho. These results guarantee that if a uniform quantizer of step size δ is used to quantize m measurements y = Φx of a k-sparse signal x ∈ R , where Φ satisfies the restricted isometry property, then the approximate recovery x via l1minimization is within O...
متن کاملNoisy 1-Bit Compressed Sensing Embeddings Enjoy a Restricted Isometry Property
We investigate the sign-linear embeddings of 1-bit compressed sensing given by Gaussian measurements. One can give short arguments concerning a Restricted Isometry Property of such maps using Vapnik-Chervonenkis dimension of sparse hemispheres. This approach has a natural extension to the presence of additive white noise prior to quantization. Noisy one-bit mappings are shown to satisfy an RIP ...
متن کاملA Block-Wise random sampling approach: Compressed sensing problem
The focus of this paper is to consider the compressed sensing problem. It is stated that the compressed sensing theory, under certain conditions, helps relax the Nyquist sampling theory and takes smaller samples. One of the important tasks in this theory is to carefully design measurement matrix (sampling operator). Most existing methods in the literature attempt to optimize a randomly initiali...
متن کاملQuantized Compressive Sensing with RIP Matrices: The Benefit of Dithering
In Compressive Sensing theory and its applications, quantization of signal measurements, as integrated into any realistic sensing model, impacts the quality of signal reconstruction. In fact, there even exist incompatible combinations of quantization functions (e.g., the 1-bit sign function) and sensing matrices (e.g., Bernoulli) that cannot lead to an arbitrarily low reconstruction error when ...
متن کاملA remark on weaken restricted isometry property in compressed sensing
The restricted isometry property (RIP) has become well-known in the compressed sensing community. Recently, a weaken version of RIP was proposed for exact sparse recovery under weak moment assumptions. In this note, we prove that the weaken RIP is also sufficient for stable and robust sparse recovery by linking it with a recently introduced robust width property in compressed sensing. Moreover,...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014